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ABSTRACT Medical image registration can be used for combining information from multiple imaging 

modalities, monitoring changes in size, shape or image intensity over time intervals. However, the 

development of such technique can be challenging for 3D spectral-domain optical coherence tomography 

(SD-OCT) imaging, because SD-OCT image is inherently noisy and its high resolution leads to high 

complexity of non-rigid registration. In this paper, a new segmentation guided approach is reported for 

registration of retinal OCT data. The proposed method models the 3D registration as a two-stage 

registration including x-y direction registration and z direction registration. In x-y direction registration, the 

vessel maps of OCT projection images between the template and the subject are registered to find out x-y 

direction displacement. The multi-scale vessel enhancement filter and morphological thinning methods are 

used to extract the vessel maps from the projection image of 3D OCT scans. And then x-y direction 

displacement is estimated by matching Speeded-Up Robust Features of the vessel maps. In z direction 

registration, using the tissue map instead of the original intensity image, A-scans are aligned to get the local 

displacements in z direction. The proposed method was evaluated on 45 longitudinal retinal OCT scans 

from 15 subjects. Experimental results show that the proposed method is accurate and very efficient. 

INDEX TERMS  Medical image, image registration, non-rigid registration, spectral-domain optical 

coherence tomography (SD-OCT), Speeded-Up Robust Features (SURF), graph cut. 

I. INTRODUCTION 

The recent introduction of next generation spectral-domain 

optical coherence tomography (SD-OCT) has become 

increasingly important in detection and investigation of 

retinal related diseases [1-4]. 3D SD-OCT imaging technique 

is a noninvasive and non-contact imaging modality for 

biological tissues. It has been widely used for investigating 

retinal pathology since it can provide high resolution 

information of the retina. The principle of OCT is the 

estimation of the depth at which a specific backscatter 

originated by measuring its time of flight [5]. As shown in 

Fig. 1, the light is split into two beams by a beam splitter. 

One beam reflected from the retinal tissue is called the 

sample arm and another beam reflected from the reference 

mirror is the reference arm. The interferogram energy 

between the sample arm and the reference arm is converted 

into image intensities with CCD or a photo sensor. A depth 

scan which is called A-scan is created from the interferogram 

intensities. For 3D imaging, SD-OCT device move the 

illuminating beam across the retina. By acquiring a series of 

A-scans in a raster scanning pattern, the cross sectional slicer 

B-scans are generated. Composing successive B-scans yields 

a 3D SD-OCT image of retina. Fig. 2 shows a 3D SD-OCT 

scan of retina which consists of B-scan slices. Each B-scan 

slice consists of A-scans. 
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FIGURE 1.  Schematic diagram of OCT image formation (cited form Ref. 
[5]). 

 

   

(a)                                                (b) 

    

(c)                                               (d) 

FIGURE 2.  Example of a 3D SD-OCT scan of retina. All images have 
been resized for better display. (a) 3D view. (b) x-z view (B-scan). (c) y-z 
view. (d) Projection image. 

 

Medical image registration has been a hot research topic 

over a decade. It has a wide range of clinical and research 

applications including combining information from multiple 

imaging modalities, monitoring changes in size, shape or 

image intensity over time intervals and so on [6-10]. To 

achieve a comprehensive description of retinal morphology 

and disease progression, diverse retinal images acquired by 

different or the same modalities at different time instants 

must be registered. Retinal registration can be divided into 

three categories: 1) fundus-fundus registration, which is 

useful to expand the effective field of view and analyze 

changes over time [11]; 2) fundus-OCT registration, which is 

a registration of 2D fundus image with 3D OCT image. It 

requires that the 3D OCT image be reduced to 2D image by 

z-direction projection [12]. Therefore, the problem of fundus-

OCT registration becomes similar as fundus-fundus 

registration; 3) OCT-OCT registration, which is useful to 

access temporal changes of retinal layers and enlarge retinal 

coverage. Among them, OCT-OCT registration is the most 

challenging one because OCT is a 3D imaging modality and 

such registration has to be performed in three dimensions.  

The two important sources which lead to changes between 

SD-OCT scans of the same eye are the patient position and 

the eye motion. The patient position will influence the point 

of entry of the beam of light emitted by the OCT device into 

the pupil, which can lead to a deviation in the field of view. 

Inevitable eye movement during data acquiring process also 

causes variations. But this kind of variations can be partly 

corrected by the hardware-based techniques. Therefore, the 

major deformations in different OCT scans of the same 

subject are translation, some limited rotation due to eye 

motion and deformation of the tissues due to expansion and 

contraction of the vasculature.  

Till now, various OCT registration algorithms have been 

proposed in the literature. The first public method for 

automated registration of SD-OCT is presented in 2009 [13]. 

They presented a rigid registration of SD-OCT volumes 

using 3D SIFT features. Since then, a lot of works which are 

restricted to the rigid registration [14-18] have been reported. 

Recently, more and more researchers have realized that it is 

not enough to describe the deformation of retina using such a 

low dimensional model and they tried to solve the problem 

by a deformable registration method. However, considering 

SD-OCT scans acquire one B-scan at a time, the appropriate 

way to handle 3D non-rigid registration of the OCT scans is 

not immediately clear. Some researchers tried to use the non-

rigid registration in a single OCT scan to solve segmentation 

and noise reduction problem. They only use the non-rigid 

registration in part of the OCT image instead of the whole 

OCT volume. Zheng et al. [19] used the ANTS Symmetric 

Normalization (SyN) registration algorithm to aid the OCT 

retinal layer segmentation and the registration was applied to 

individual layers instead of the whole OCT image. Zhang et 

al. reported a two-step image registration method to reduce 

the speckles in OCT images [20]. The method began with a 

global rigid transformation and then the local transformation 

was estimated between successive B-scans by a graph-based 

algorithm. Cheng et al. proposed a novel speckle reduction 

method for 3D SD-OCT scans [21]. They globally aligned 

the consecutive B-scan slices and then locally aligned 

neighboring A-scans to correct the distortions. This method 

removed the displacements of a single OCT volume in x and 

z directions. Since the longitudinal SD-OCT image 

registration problem is more challenging than that of a single 

SD-OCT volume, limited works have been reported. The 

highly-rated deformable registration algorithms for medical 

images such as SyN [22], DRAMMS [23] are showed to be 

unreliable when applied to the whole OCT image.  
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FIGURE 3.  Flowchart of the proposed algorithm. 

 

Chen et al. [24] proposed a deformable registration method 

using A-scan similarity. In their method, the position of 

retinal fovea which was approximated as the superior point 

of the thinnest portion of the retina was used for the initial 

registration and then the retinal layers were aligned by a 

deformable registration using one-dimensional redial basis 

function. In our previous work, a two-step registration 

method using the coherent point drift method followed by 

non-rigid B-spline-based registration (CPDBS) was 

introduced [25]. Compared with rigid registration, these 

retinal OCT deformable registration methods achieve better 

accuracy while sacrificing computing speed. Since the 

deformable transformation is a free form mapping at each 

voxel x, it can be solved by finding a transformation of each 

voxel to minimize an energy function. Considering the high 

resolution of OCT data, the energy function would be a very 

high dimensional function which makes it extremely difficult 

to find the global optimal solution. The main difficulties are 

the computation complexity and the local minima problem. 

This paper proposes an efficient and accurate registration 

method for retinal SD-OCT images. To achieve the 3D 

registration, the x-y direction registration and z direction 

registration are designed. For x-y direction registration, a 

vessel skeleton extraction method is applied to generate 

vessel map, and Speeded-Up Robust Features of the vessel 

map is used to guide x-y direction registration. For z 

direction registration, the tissue map is used instead of the 

intensity image, and a group of A-scans in the neighborhood 

of the target A-scan are aligned to get the local displacement 

in z direction. The advantage of this method is that it can 

achieve good registration accuracy with very low 

computation complexity. According to our experiments, the 

total average computation time is 340 seconds which is very 

competitive.  

The rest of this paper is organized as follows. Section II 

presents steps of the proposed registration process in detail. 

Section III discusses the performed experiments and shows 

the simulation results. Finally, discussions and conclusions 

are given in Section IV. 

II. METHODOLOGY 

The proposed method consists of three steps: preprocessing, 

global x-y direction registration and local z direction 

registration. The overall flowchart is shown in Fig. 3. In 

preprocessing step, OCT data are first segmented into 7 

surfaces using multi-resolution graph search and the surface 

segmentation information is then used to calculate the 

projection image and label the retinal layer tissues.  In 

registration step, a two-step registration method is applied. 

The vessel information is extracted from the projection 

images to guide the global x-y direction registration. The 

labeled tissue maps are used to guide the local z direction 

registration. The details of each step are discussed in the 

following parts. 

A. PREPROCESSING 

In preprocessing step, there are three main tasks: retinal 

layer segmentation, projection image calculation and retinal 

layer tissue labeling.  

1) Retinal layer segmentation: The SD-OCT image is 

segmented automatically using the multi-layer graph search 

based method [26], yielding 11 surfaces (10 layers): retinal 

nerve fiber layer (RNFL), ganglion cell layer (GCL), inner 

plexiform layer (IPL), inner nuclear layer (INL), outer 

plexiform layer (OPL), outer nuclear layer  and inner 
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segment layer (ONL+ISL), connecting cilia (CL), outer 

segment layer (OSL), Verhoeff’smembrane (VM), and 

retinal pigment epithelium (RPE) as shown in Fig. 4. The 

basic idea of this method is to transform the optimal surface 

detection problem into computing a minimum s/t cut in an 

arc-weighted directed graph. The key to transform the 

optimal surface detection problem into seeking a minimum 

closed set in a graph is based on the important observation 

that any feasible surface in a volumetric image uniquely 

corresponds to a nonempty closed set in a node-weighted 

directed graphs with the same cost [27, 28]. And the 

minimum closed set problem is to search for a closed set with 

the minimum cost, which can be solved by computing a 

minimum s-t cut. The total cost function is defined in the 

following way: 

,

( , )

= ( ( ) ( ))v p q

v S p q N

E C w S p S q
 

                (1) 

where S is the desired surface, 
vC is an edge-based cost, 

which is inversely related to the likelihood that the 

voxel v S . ( , )p q is a pair of neighboring columns and 

,p qw is a convex function penalizing the desired surface 

shape change on ,p q . The segmented surfaces are then 

used for producing projection image and labeling retinal 

layer tissues. Considering some surfaces are very close to 

each other, we use 7 prominent surfaces among the 

11surfaces to guide the registration. The 7 surfaces are 

surface1, 2, 4, 5, 6, 7 and 11.  

 
FIGURE 4.  Retina surface segmentation illustration. 

 

2) Projection image calculation: After retinal layer 

segmentation, the projection image is calculated. According 

to the fact that the blood vessels produce a hyper intense area 

in the inner retina and their shadows produce a hypo intense 

area in the outer retina, vessel information can be extracted 

from the projection image of 3D OCT data. To obtain 2D 

projection image, the intensity values of voxels along each 

A-scan between the upper surface of RPE layer and Bruch’s 

membrane are averaged.  

3) Retinal layer tissue labeling: SD-OCT images suffer 

from serious speckle noise [29-31]. Since traditional intensity 

based registration methods use image intensities to measure 

the similarity between the template and the subject image, 

they tend to be sensitive to deal with such noisy images. To 

overcome this problem, we apply a retinal layer tissue 

labeling method. According to the surface segmentation 

results, we label the original retinal SD-OCT image into 

seven prominent tissues including the background, NFL, 

GCL+IPL, INL,OPL,ONL+ISL and RPE+. As shown in Fig. 

5, different intensities represent different tissues of the retina. 

Using the tissue map instead of the original intensity image 

in the registration can overcome the speckle noise. 

 

FIGURE 5.  Retinal layers after tissue labeling. 

B. X-Y DIRECTION REGISTRATION 

In our method, the 3D registration is modeled as x-y 

direction registration and z direction registration. The main 

target of x-y direction registration is to remove the 

displacement between the template and the subject image 

which is caused by different position of the eye. The major 

deformations that need to be resolved are translation, limited 

rotation and scaling. To find out the global deformation 

parameters of the 3D OCT image pair, the vessel maps of 

their OCT projection images are extracted to guide the 

registration. However, extracting vessels from OCT 

projection image is more challenging than from fundus 

image due to the speckle noise and low resolution [32]. There 

are several methods for vessel segmentation from the OCT 

scan. The commonly used methods are vessel detection filter-

based method [33], graph theory-based approach [34] and 

kNN classifier-based method [35]. We adopt the vessel 

detection filter-based method in our algorithm. Considering 

the process of achieving retinal OCT images is inevitably 

disturbed by noises, especially speckle noise, their projection 

images also suffer from serious speckle noise. In order to 

obtain a high quality projection image, we adopt Histogram 

Equalization [36] to adjust the contrast of retinal OCT 

projection image and improve the visibility of blood vessels. 

The method can better allocate the intensities by effectively 

spreading out the most frequent intensity values (Fig. 6(b)). 

Then we use Wiener filtering to suppress noises. The 

computational complexity of Wiener filter is much lower 

compared with other typical digital filters to reduce speckle 

noise [37]. After that, we get the projection of OCT image 

with high quality (Fig. 6(c)). As the blood vessels of retinal 

OCT projection images exhibit a tree bifurcation structure, 

that is to say the size of the blood vessel changes variously 

from trunk blood vessel to capillary, it is difficult to detect 

the micro vessels by using single-scale vessel enhancement 

filtering. The detection of vessel shadows is divided into two  
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stages. In the first stage, the multi-scale vessel enhancement 

filter based on Hessian matrix is applied to detect tubular 

structures which could be regarded as blood vessels (Fig. 6 

(d)). To analyze the local structure of an image I, the Taylor 

expansion in a neighborhood of pixel A is considered as 

follows: 

        AAHAAIAAIAAI TT           (2) 

where  AI and  AH  are the gradient vector and Hessian 

matrix of the image computed in pixel A. The detection of 

vessels can be achieved by analyzing the second order 

information. The third term in Eq. (2) gives the second order 

directional derivative. Let 
1 and 

2 denote the eigenvalues 

of the Hessian. For an ideal tubular structure in 2D image, 

the eigenvalues should satisfy 01  and 

21   [38].A vesselness measure function is defined 

as follows: 
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where BR is the blob measurement. BR  attains the 

maximum value for a blob-like structure and equals to 0 

when 01  . S is the second order structural measurement. 

It is low in the background where no structure is present and 

becomes larger in the regions with higher contrast compared 

to the background. The β and с are the thresholds which 

control the sensitivity of the line filter to the measures 

BR and S . In our experiment, β is fixed to 0.5 and с is set to 

half the value of maximum Hessian norm. The vesselness 

measure in Eq. (3) is analyzed at different scales. The 

response will achieve a maximum value at the scale that 

approximately matches the size of the vessel. 

In the second stage, the morphological single-pixel-wide 

thinning method is used to simplify the vessel structure and 

to describe the position of the blood vessel clearly. First, the 

value of the pixels from 220 to 290 in length and from 125 to 

150 in width is set to zero to avoid misjudgment of blood 

vessels due to vasoreflex (Fig. 6 (e)). Then the morphological 

corrosion is conducted by using the ‘disc’ structuring element 

to get rid of noises (Fig. 6 (f)). After that, the thinning 

method based on mathematical morphology is applied to 

refine the width of the processed blood vessels into one pixel 

(Fig. 6 (g)). Finally, biased skeleton of blood vessels are 

removed when the size of the skeleton is less than a threshold 

to enhance the accuracy of the vessel detection result. The 

extracted blood vessel map is shown as Fig. 6 (h). 

  To ensure fast and accurate registration for vessel maps, 

Speeded-Up Robust Features (SURF) [39] which can 

outperform other state-of-the art local feature detectors in the 

context of longitudinal registration of retinal images is used 

[40]. SURF algorithm is invariant to scale and rotation and 

has low computational complexity. It contains three main 

steps: interest points determining, direction feature extracting 

and matching. After applying the SURF method to the 

extracted blood vessel map, RANSAC approach [41, 42] is 

used to remove the outliers. Finally, the registration 

parameter can be obtained. The transformation is therefore 

described by Eq. (6), where [ ', ']x y  is the transformed new 

position and [ , ]x y  is the original position of the subject 

image. cosa s  , sinb s  . s  is the scale value and 

  is the rotation value. 
xt  and yt  are the value of x-

direction translation and y-direction translation, respectively.  

'

'

x

y

tx a b x

ty b a y

      
        

       

                   (6) 

 

The proposed x-y direction registration algorithm can be 

summarized as follows: 

Algorithm I： 

BEGIN 

1:  Input: The original projection image; 

2:  Apply Histogram Equalization  and Wiener filtering  to 

the projection image to enhance the image quality and 

suppress noises; 

3:  Detect the vessel structure using the multi-scale vessel 

enhancement filter; 

4:  Extract the skeleton of vessels using the morphological 

single-pixel-wide thinning method; 

5:  Refine the skeleton of vessels and remove the biased 

skeleton of blood vessels with a threshold-based method; 

6:  Perform registration using SURF features and remove 

the outliers using RANSAC; 

7:  Apply the transformation parameters which are obtained 

from the registration to the OCT volume to complete the x-

y direction registration ; 

8:  Output: The globally registered image; 

END 

C. Z DIRECTION REGISTRATION 

After x-y direction registration, the x-y direction 

displacement is corrected. The remaining step to achieve full 

3D registration is to find out the displacement along z 

direction. Instead of simply aligning certain boundary of 

retina in z direction [43], a two-step z direction registration 

was performed to overcome the registration error caused by 

the deformation of retinal layers due to disease. We 

formulate z direction displacement as a sum of axial motion 

during 3D OCT scanning and inter displacement between the 

template and subject images, i.e., 
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(a)                          (b)                           (c)                         (d)                           (e)                        (f)                            (g)                       (h)     

FIGURE 6.  (a) Projection image. (b) Enhanced image. (c) Denoised image. (d) Detected blood vessel. (e) Removal of center white spot. (f) Corroded 
blood vessel. (g) Single-pixel-wide skeleton of vessel. (h) Trimming biased skeleton off. 

 

 

ermotion zzz int               (7) 

motionz is caused by the vertical movement of eye and head 

motion during 3D OCT scanning. In motion distorted data, 

the position of layers varies greatly in consecutive B-scans 

which make interpolation and regularization difficult. 

motionz can be observed in y-z view as shown in Fig. 2(c), 

where each column corresponds to a B-scan. The template 

image should be a motion free image. In order to correct 

axial motion artifacts and provide a more consistent retinal 

shape for visualization, surface 11 is used as the reference 

surface for motion correction. The lowest z position of 

surface 11 is set as the base position 
basel  and the vertical 

distance 
,i jz  between surface 11 and the base is calculated 

to estimate the displacement of each A-scan: 

 

, base 11 ,i j i jz l l                                           (8) 

where
11 ,i jl  is the vertical position of surface 11 in each

,i jA . 

And then, the OCT volume is flattened by shifting the A-

scans down in the z-direction according to the displacement, 

such that the z positions of surface 11 become the same for 

all A-scans. Therefore, an axial motion free template image 

can be obtained. Applying the same process to the subject 

image can remove the axial motion in the subject image.         

Considering the serious speckle noise in SD-OCT images, 

the tissue map is used instead of the original intensity image 

in the registration to overcome the speckle noise. The local z 

direction registration is done by applying a vertical 

displacement on ,i jA , such that the tissue map difference 

between the two A-scans in subject and template images is 

minimized. To increase the robustness, a group of A-scans 

are used for computing the difference instead of a single A-

scan.  As illustrated in Fig. 7, ji
TG , and ji

SG , are a group of 

A-scans centered at ji
TA , and ji

SA , from the kth B-scan 

k
TB and k

SB  in the template and the subject images, 

respectively. Mathematically, the group of A-scans can be 

written as: 

],,...,,[ ,1,1,,, wji
T

wji
T

wji
T

wji
T

ji
T AAAAG       (9) 

],,...,,[ ,1,1,,, wji
S

wji
S

wji
S

wji
S

ji
S AAAAG        (10) 

 

In this paper, we search for the vertical displacement by 

minimizing the difference between ji
TG , and ji

SG , : 

 


zx

ji
T

ji
S

z
zxGzzxG

,

,, ),(),(min      (11) 

 

FIGURE 7.  Illustration of z direction registration. 
ji

SA ,
is aligned with 

ji
TA ,

 according to the similarity of 
ji

SG ,
and 

ji
TG ,

. 

 

The proposed z direction registration algorithm can be 

summarized as follows: 

Algorithm II： 

BEGIN 

1:  Input: The x-y direction registered retinal OCT image;  
2:  Correct axial motion distortions to get axial motion free 

image; 

3:  For each A-scan in the template image and the subject 

image ji
TA , and ji

SA ,  , define a group of A-scans 

ji
TG , and ji

SG ,  as in Eq.(9) and Eq.(10); 

4:  Search for the z direction displacement by minimizing 

the tissue map difference between ji
TG , and ji

SG , ; 

5:  Apply the z direction displacement to the x-y direction 

registered OCT image to achieve the 3D registration ; 

6:  Output: The final registered image; 

END 
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III. EXPERIMENT AND RESULTS 

A. EXPERIMENT DATA AND EVALUATIONS METRICS 

To evaluate the performance of the proposed method, 

macula-centered SD-OCT scans were acquired using Topcon 

DRI OCT-1 scanner. All the scans were acquired with 256 

B-scans, each B-scan having 512 A-scans with 992 pixels per 

A-scan. The image resolution is 11.72×2.62×23.44 um
3
. The 

dataset includes 45 retinal OCT scans from 15 subjects, with 

each subject having 3 longitudinal scans. This study was 

carried out following the principles of the Declaration of 

Helsinki and approved by the volunteers and patients for 

publication. The OCT scan from time point 1 was selected as 

the template. Scans from other time points were registered to 

the selected template. The proposed method was applied to 

the longitudinal data of the same subject and the experiment 

was repeated to all the other subjects from the dataset. 

Quantitative evaluation is important to justify the advantages 

of the proposed method. To quantitatively assess the 

accuracy of the registration algorithm, the Dice overlap ratio 

and the average surface error which are typically used as the 

quantitative performance metrics in the OCT registration 

were calculated. The Dice overlap ratio for each layer 

between the template and the registered OCT images was 

calculated as follows: 

k k

k

k k

2 T S
d

T S




                               (12) 

where 
kd is the voxel-wise overlap ratio for retinal layer k;  

kT  and 
kS are the set of voxels labeled as layer k in the 

template and the warped subjects.  The overlap ratio takes the 

values between 0 and 1.0. 
kd of 1.0 corresponds to full 

overlap between 
kT  and

kS , while 
kd of 0 corresponds to 

none overlap. Higher value of 
kd shows better registration 

accuracy. The average surface error which measures the 

average absolute A-scan distance between each boundary 

surface in the template and the registered OCT images was 

also computed. The smaller the average surface error values 

are, the better registration performance has been achieved. 

B.  PERFORMANCE EVALUATIONS 

To evaluate the performance of the proposed algorithm, three 

different experiments were performed.  

1) Evaluation of projection image enhancement and 

denoising: The x-y direction registration method which is 

presented in this paper relies on the detection and extraction 

of the blood vessel points. Extracting vessels from OCT 

projection images is more challenging than from fundus 

images due to the speckle noise and low resolution. To 

enhance the image quality and suppress noises, Histogram 

equalization (HE) and Wiener filtering (WF) were applied to 

the projection image. The results are demonstrated in Fig.6. 

The proposed method is also compared with some other 

image enhancement and denoising methods including gray 

scale transformation method (GST), anisotropic diffusion 

method (AD) and so on. The blood vessel detection results 

with different preprocessing methods are shown in Fig.8. 

From Fig.8, it can be observed that after preprocessing the 

detected blood vessels are clearer. Although the image 

enhancement methods enhanced the vessel information, it 

also enhanced the noises (Fig. 8 (b) and (c)). With the help of 

denoising methods, the influence of noise can be reduced 

(Fig. 8 (d) - (g)). The results of Fig. 8 show that use the 

Histogram equalization and Wiener filtering method as the 

preprocessing method can achieve the best vessel detection 

result among all the methods. 

2) Evaluation of x-y direction registration and z direction 

registration: After x-y registration, the displacement along x-

y direction which is caused by the different position of eyes 

during the scan process can be corrected. Fig. 9 demonstrates 

the x-y direction registration using SURF. SURF descriptors 

are designed to be robust against imaging artifacts and 

distortions. And they were proved to be more reliable than 

the bifurcation and cross-over points which are commonly 

used as landmark points for retinal image registration [36]. 

By applying x-y direction registration, the original 

misaligned vessels in Fig. 9 (d) are better aligned in Fig. 9 (e). 

In addition to the registration performance revealed by the 

real data, we use the simulated deformations to validate the 

accuracy of x-y direction registration. The simulated data 

was created as follows. The projection image of OCT scan 

from time point 1 in our test dataset was selected as the 

template. Projection images from other time points were 

simulated by applying translation, rotation, scaling or a 

combination of them under the guidance of ophthalmologists. 

With the known transformation, it is easy to detect the 

correspondence points in the subject OCT projection image 

and the template OCT projection image. Suppose the 

correspondence position for [ , ]x y in the subject OCT 

projection image is[ , ]r rx y . By applying the proposed x-y 

direction registration method, [ , ]x y in the subject OCT 

projection image can be transformed to the new 

position [ ', ']x y . The pixels are said to be accurately 

registered if  

' '

2
( ) ( ) 2r rx x y y                     (13) 

The worst and the best registration results of the simulated 

data are presented in Fig. 10. The worst registration result is 

due to the large rotation degree. However it rarely happens in 

real data. To measure the registration accuracy, we selected 

several pixels on the vessel skeletons of the vessel map as the 

key pixels. Suppose the number of the key pixels is N. If the 

number of the accurately registered pixels is M among the 

selected pixels, we then can calculate the ratio of M and N to 

measure the accuracy of the proposed x-y direction 

registration method. The results are reported in Table I.   

Although x-y direction registration corrected the 

misaligned vessels, the axial motion during 3D OCT 
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(a)                           (b)                           (c)                          (d)                            (e)                           (f)                            (g)                    

FIGURE 8.  Blood vessel detection results with different preprocessing methods (a) No preprocessing. (b) Gray scale transformation (GST). (c) 
Histogram equalization (HE). (d) Gray scale transformation and anisotropic diffusion (GST & AD). (e) Histogram equalization and anisotropic diffusion 

(HE & AD). (f) Gray scale transformation and Wiener filtering (GST &WF). (g) Histogram equalization and Wiener filtering (HE & WF). 

          

(a)                           (b)                                           (c)                                           (d)                              (e) 

FIGURE 9.  Illustration of vessel map registration for the real data. (a) Template vessel map. (b) Subject vessel map. (c) Matching points. (d) Vessel 
map overlap before registration. (e) Vessel map overlap after registration. The background color is removed in (d) and (e). The vessel skeletons of the 
template image are set to green and the vessel skeletons of the subject image are set to red for better view. 

                       

  (a)                                (b)                            (c)                             (d)   

FIGURE 10.  Illustration of vessel map registration for the simulated data. (a) (c) Vessel map overlap before registration. (b) (d) Vessel map overlap 
after registration. The vessel skeletons of the template image are set to blue and the vessel skeletons of the subject image are set to red for better 
view. 

 

scanning and z direction displacement between the template 

image and the subject image still exist. Therefore, the z 

direction registration is quite necessary. We should note that 

the z direction registration will only change the z position but 

not the x-y position of an A-scan. Since the main task of z 

direction registration is to remove the axial motion of OCT 

scans, we can compare the average surface error to evaluate 

its performance. The results are summarized in the last 

column of Table III. It can be observed that after z direction 

registration the average surface error is obviously reduced 

which indicates the surfaces of the subject image were well 

aligned to the template image. 

3) Comparison with other registration methods: To 

demonstrate the excellent performance of our algorithm, the 

proposed method was compared with other typical 

registration methods including the rigid registration, the 

highly ranked non-rigid registration algorithm for general 

medical image registration HAMMER [44] and our 

previously proposed CPDBS deformable registration method 

especially designed for OCT images [25]. Fig. 11 

demonstrates the registration results by using these different 

methods for visual comparison. In Fig.11, the first row 

corresponds to the template image and the subject image. 

The second row to the fifth row correspond to the registration 
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results and the checkerboard images by using the rigid 

registration, HAMMER registration, CPDBS registration and 

the proposed registration method, respectively.  

The experiment results show that the checkerboard image 

of the rigid registration has many discontinuities. It 

demonstrates that the rigid registration is not enough to 

describe the deformation of retina. The registration results of 

HAMMER show that directly applying HAMMER to the 3D 

OCT volume will lead to relatively poor performance. 

 

(a)                                                          (b) 

 

(c)                                                            (d) 

 

(e)                                                          (f) 

 

(g)                                                         (h) 

 

(i)                                                         (j) 

FIGURE 11.   An example of registration result by using different 
registration methods. (a)Temple image; (b) Subject image; (c) 
Registration result by rigid registration; (d) Checkerboard image of rigid 
method;(e) Registration result by HAMMER registration; (f) 
Checkerboard image of HAMMER; (g) Registration result by CPDBS 
registration; (h) Checkerboard image of CPDBS; (i) Registration result 
by proposed method; (j) Checkerboard image of proposed method. 

 

This is because HAMMER is initially designed for brain 

image registration and it does not consider the characteristic 

of retinal OCT images. Therefore, the feature vectors used in 

HAMMER cannot correctly distinguish the retinal structures. 

CPDBS registration method is especially designed for retinal 

SD-OCT images. Its registration result shows better 

performance than the rigid registration and the HAMMER 

non-rigid registration method. However, the checkerboard 

image still has some discontinuities which demonstrate that 

some regions are not well aligned.  The main reason is that 

CPDBS registration method relies on intensity similarity to 

match the correspondences. However, SD-OCT images 

suffer from serious speckle noises. The normal intensity 

based registration methods tend to be more sensitive to the 

noises during the registration process when the intensity 

contrast is low. Although the B-spline transform used in 

CPDBS method can better describe the deformation of retina 

than the rigid registration, directly using the B-spline 

transform without considering the geometrical characteristic 

of OCT images may suffer from the local minima and lead to 

correspondence mis-matching. Among all the methods, the 

proposed algorithm shows the best performance. The 

checkerboard image is smooth which demonstrates that the 

subject image is well aligned to the template image. This is 

due to our two innovations. 1) In our method, the 3D 

registration is modeled as a two-step registration. Since a 

single A-scan is acquired at a time, voxels have strong 

correlations along A-scans. Therefore, each A-scan is 

considered as a base deformable unit and the voxel 

transformation is not allowed across different A-scans. 

Therefore, the mis-matching across different A-scans is 

avoided. 2) The tissue map is used instead of the intensity 

image in the registration to reduce the negative effect of the 

speckle noises. Therefore, the registration accuracy is 

improved.  

Table II reports the Dice overlap ratios of each retinal 

layer by using the above mentioned different registration 

methods. The overall Dice overlap ratios of six retinal layers 

is 0.86 by using the proposed registration method and it is 

higher compared with that of the other registration 

approaches. We further examined the statistical significance 

of the improvement of our method via the paired t-tests. 

Compared with the other registration approaches, our method 

can achieve statistical significant improvements (p-value 

<0.05) in the Dice overlap ratio consistently. Table III reports 

the average surface error by using the different registration 

methods. The overall average surface error is 10.2um by 

using the proposed registration method and it is smaller 

compared with that of the other registration approaches. The 

results of the paired t-tests also shows that our method can 

achieve statistical significant improvements (p-value <0.05) 

in the overall average surface errors consistently. 

4) Computation Complexity: The proposed registration 

algorithm was implemented in Matlab and tested on a PC 

with Intel(R) Core(TM) i7-47903.6GHz CPU and 8GB RAM. 

The average running time of the proposed algorithm is about 

340 seconds. The segmentation step, x-y direction 

registration step and z direction registration step takes 
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235 seconds, 65 seconds and 40 seconds, respectively. For 

comparison, the CPDBS method requires 10hours for one 

registration. Although HAMMER method uses hierarchical 

attribute matching mechanism to speed up the registration 

process, it still requires 1 hour to finish one registration. 

 
TABLE I 

EVALUATION OF X-Y DIRECTION REGISTRATION  

Simulated Data Accuracy 

Translation only 100% 

Rotation only 90% 

Scaling only 92% 

Combination 87% 

 

TABLE II 

DICE OVERLAP RATIOS OF 6 RETINAL LAYERS  

Layer Rigid  HAMMER  CPDBS  
Proposed 

method 

RNFL 0.67 0.48 0.72 0.81 

GCL+IPL 0.82 0.52 0.8 0.89 

INL 0.55 0.33 0.76 0.86 

OPL 0.68 0.4 0.77 0.79 

ONL+ISL 0.8 0.36 0.8 0.9 

RPE 0.74 0.43 0.79 0.92 

AVG 0.71 0.42 0.77 0.86 

 
TABLE III 

AVERAGE SURFACE ERROR (UM)  

Surface Rigid  HAMMER  CPDBS  
Proposed 

method 

Surface1 24.5 36.3 16.8 13.5 

Surface2 30.2 38.1 18.7 13.8 

Surface3 22.6 43.2 20 7 

Surface4 26.4 42.5 20.8 7.3 

Surface5 23.8 41.8 21.6 14.2 

Surface6 25.7 43.1 21.4 7.7 

Surface7 23.2 38.6 22.8 7.9 

AVG 25.2 40.5 20.3     10.2 

 

C.  APPLICATIONS 

To show the applications of the proposed registration 

algorithm, two examples are given in this section 

1) Application in predicting growth of choroid 

neovascularization: The first application is using the 

registration method to help the growth prediction of choroid 

neovascularization (CNV). CNV is a kind of pathology from 

the choroid. It is caused by new blood vessels growing in the 

choroid. CNV-related disease is one important cause of 

visual disability. As so far, its pathogenesis is still not clear. 

A standard and effective treatment for CNV is to inject anti-

vascular endothelial growth factor (anti-VEGF) agents into 

the eye to suppress further blood vessel growth. However, 

such treatment requires frequent re-treatments. Therefore, 

treatment planning is essential to ensure the efficacy while 

reducing the risk. Predicting the growth of CNV based on 3D 

longitudinal OCT images can greatly help to make the 

treatment plan. However, since longitudinal OCT images are 

collected from different times, different positions of eye 

during the scanning will cause displacements of the retina in 

OCT images. Such displacements severely affect the 

accuracy of prediction. Therefore, to guarantee the prediction 

accuracy and observe the change of lesion area at the same 

position, registration process is necessary. First, the image 

registration was conducted on the longitudinal OCT images. 

In the registration process, since segmenting the layers in 

CNV data is more challenging than in normal data, the graph 

search method was first applied to obtain a rough 

segmentation results. For the data with poor segmentation, 

we modified the local segmentation results manually under 

the guidance of an experienced ophthalmologist.  

    

(a)                                    (b) 

FIGURE 12.  Example of registered vessel images. (a) Vessel map 
overlap before registration. (b) Vessel map overlap after registration. 
The vessel skeletons of the template image are set to green and the 
vessel skeletons of the subject image are set to red for better view. 

   

(a) 

   

(b) 

    

(c) 

FIGURE 13.  Examples of the registered B-scans. First column is the 
B-scan in CNV region. Second column is the B-scan far away from CNV 
region. (a) Temple image; (b) Subject image; (c) Registration result. 
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FIGURE 14.  An example of CNV prediction result. 

 

Ten pairs of registration were done with CNV data 

containing 512×128×1024 voxels and with a resolution of 

11.74×1.96×47.24 um
3
. Examples of registered vessel 

images and registered B-scans are demonstrated in Fig. 12 

and Fig. 13. The registration results show that by using the 

proposed z direction registration method, the average dice 

overlap ratio can achieve 79%, which is 5% higher than 

simply aligning the RPE surface in z direction. After 

registration, reaction diffusion model was applied to predict 

the CNV growth in 3D OCT images. Fig. 14 shows an 

example of the result for CNV growth prediction. The green 

area is the manually segmented CNV result as the ground 

truth. The red line overlaid on the original image is CNV 

prediction result. The result has a good prediction in the size 

and location of the future CNV region.  

This method can also be used to guide the treatment 

planning in clinical practice. Fig. 15 shows the CNV growth 

measurement at the first three months for the treatment group 

and the reference group. In the treatment group, anti-VEGF 

medicine was injected and the disease area decreased 

obviously.  In the reference group, without injecting anti-

VEGF medicine, the disease became worse.  It can be 

observed that anti-VEGF medicine can suppress further 

blood vessel growth and prevent disease progression 

effectively. 

 

 

FIGURE 15.  CNV growth measurement at the first three months. (a) 

Treatment group. (b) Reference group. Green, red, yellow and blue area 
in a B-scan represent CNV area, sub-retinal fluid, pigment epithelial 
detachment and cystoid edema, respectively. 

 

2) Application in reducing speckle noise: In the second 

example, we show the application of registration to reduce 

speckle noise. Speckle noise is problematic in OCT images. 

It inherently exists in OCT and degrades the image quality. A 

raw OCT image usually has very poor quality due to the 

speckle noise. Speckle noise not only affects visual diagnosis, 

but also increases the challenges in automatic image analysis. 

Therefore, speckle noise reduction is important. The common 

approach to improve the OCT image quality is to calculate 

the average image through overlapping scans. The data to be 

averaged should be acquired from the same position. 

However, in practice, slight position changes always happen 

during scanning due to the movement of the beam and the 

sample. Therefore, registration is important to overcome the 

mis-alignment. In our experiment, using the SD-OCT image 

from time point 1 as the template image, other longitudinal 

images were registered to the template image. After 

registration, corresponding B-scan from the longitudinal 

images are added and averaged to get the clean image.  

 

(a)                                                        (b) 

FIGURE 16.  Speckle noise reduction by using registration. (a) Original 
B-scan. (b) The same B-scan after speckle noise reduction. 

As shown in Fig. 16, after registration and averaging, the 

speckle noise is reduced and the quality of OCT image is 

improved. As we do not have the ground truth image for 

comparison, traditional measurement such as peak signal to 

noise ratio cannot be computed here. In this experiment, 

since we only have three longitudinal scans for each subject 

in our dataset, three longitudinal scans were used for 

averaging. It should be noted that with more overlapping 

scans, the image quality can be further improved. 

IV. CONCLUSION AND DISCUSSION 

In this paper, we proposed a novel algorithm for 3D retinal 

OCT image registration by modeling the problem as a two-

step registration problem including x-y direction registration 

and z direction registration. In the proposed method, the 

vessel maps are extracted from the projection image of 3D 

OCT scans and x-y direction displacement is estimated by 

matching Speeded-Up Robust Features of the vessel maps. 

Then, using the tissue map instead of the original intensity 

image, a group of A-scans in the neighborhood of the target 

A-scan are aligned to get the local displacement in z direction. 

The proposed method was tested on longitudinal data with 

three time points on fifteen eyes. Experimental results proved 

the feasibility and accuracy of the proposed method. In the
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proposed method, since z direction registration is guided by 

the layer segmentation results, the segmentation accuracy 

will directly affect the accuracy of the registration. 

Nowadays, many new retinal layer segmentation algorithms 

have been proposed. One class is graph-based methods. For 

example, our latest work proposed NNCGS segmentation 

method [45] which achieves better layer segmentation 

accuracy in OCT images with choroidal neovascularization. 

However, the computation complexity of this method is very 

high and the running time is twice longer than that of the 

method we used in this paper. Therefore, when dealing with 

large data set, the segmentation efficiency is low. Another 

popular class is deep learning-based segmentation methods. 

For example, the latest published work CE-Net [46] showed 

excellent segmentation results. Even though deep learning-

based method always shows better segmentation accuracy 

than traditional method, it has some shortcomings. The 

training process is time consuming and a large number of 

training samples are required. The segmentation method used 

in this paper is not the most accurate one but has the 

following advantages: 1) it is guaranteed to find the three-

dimensionally optimal solution with respect to the cost 

function; 2) it can deal with both normal and diseased retinal 

OCT image; 3) it can obtain high accuracy with low 

computation complexity. Although, the multi-resolution 

graph search segmentation results are generally found 

accurate and robust in our experiment, automatic accurate 

surface segmentation is not easy for pathological region with 

dramatic change in the layer structure.  Furthermore, since 

the retinal layers in OCT image are plate-like structure, 

neighbor A-scans are very similar to each other. To avoid 

mis-matching across different A-scans, only limited 

deformations are considered in x-y direction and each A-scan 

is fixed as a base deformable unit. However, higher 

dimensional transformation models with the aid of well 

designed features can better describe the deformation of 

retina. Future work will focus on improving the method to 

automatic process serious diseased retinal OCT images and 

designing higher dimensional transformation models to better 

describe the deformation of retina. 
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